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ABSTRACT 

Thim V O ~ U ~ Q  of the final report on the unmanned Hultiple 

Exploratory Probe Symtem (HEPSI detailm r l l  crlculstions, deri- 

vationr, anolymem, and computer progrru that support the infor- 

mation presented in the firmt volume. 
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INTRODUCTION 

In Volume One of the report on the Hultiple Exploratory 

Probe Syiten (HEPSI the final derign i8 presented. However, in 

mort carem the rearoning or rationaie behind nany of the deaign 

deCi8iOn8 are not given to the reader. Volume Two alleviatee 

thir problem by prerenting calculationr, derivationr, computer 

programr, and additional argument. for the final deeign. 

Several area8 are discussed in this volume. First, the 

rtructurel m a s 8  calculation and the structural analysis or@ 

prerentmd. The calculation of the propulsive burnr for the 

Earth-Hers tranrfer are rhovn, am well a 1  the burno required for 

the aerobraking and the ratellita. The recondery and main pro- 

pulrion ryrtemr are rtudied to obtain the mass o f  propellant 

(oxidizer and fuel) required for the entire trip and the rim? of  

the propellant tanka; engine analyrir is also presented in more 

detail in thir volume. Tho necerrary equations for the aero- 

braking program are derived, end the lander system ir analyzed 

for determination of mar8 and stagnation temperature. In 

addition the recovery ryatem is optimized. Appendice8 present 

verious programs and rupplenental plotr. 
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STRUCTURAL MASS CALCULATION 

The total rtructural m a 8 1  wa8 calculated by running the ma81 

of each component of the structural mystem. The rtructural mas8 

will be dlvlded Into rtrlngerr, bulkheadr, the cylindrical 

rhellr, the capo on the end8 of the modulee, and the connectors. 

Alurlnum will be ured for the rtructural material (specific 

Weight = 173.4 lb/fta 1. 

SkAQUam 

There are 36 longitudinal rtringarr arranged circumfer- 

entially along the length of each module. Each rtringer is 

arrumed to have a crors-rectional are8 of 1 ina = 0.006944 ft2. 

Therefore, the total rtringer mas1 ir 

36 x (nodule length) x (0.006944 fta) x (173.4 lbn/fta) 

m a 8 8  (lbl) = 43.365 X length 

Bulkhe.dr 

The bulkheadr are I-beams located along the interior circum- 

ference. The crosr-sectional area of thie beam in 1-25 ina = 

0.008681 ft*. For the m a 8 8  o f  each bulkhead, 

(2.n) x (12.3 ft) x (0.008681 ft') x (173.4 lbn/fta) 

1811 = 118.261 lbn (par bulkhead) 

The (2-n-12.5 ft) term ir the circumference of the bulkhead, 

where 12.5 ft is the radius of the nodule. 

2 
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The ntructur81 marr of the cylinder obviourly dapende on the 

length of the module. Uring 8 thicknese of 1/4 in t.020833 ft), 

(2.n.12.5 ft) x (0.020833 ft) x (173.4 lbn/fta) x length 

nann (lbm) = 283.83 x length 

e 
The end cap ir 8 plate modelled on the end of the module, 

and two c8pn are deeigned for e8ch nodule. Uiing the mame thick- 

ne8r 88 the cylindric8l crhelln t.020833 it), 

2Cn*(12.5 ft)* x (0.020833 ft) x (173.4 lbn/fta)l 

namn - 3547.98 lbn 
Conn+ctor. 

Each connector $8 one inch thick 8nd 810 five feet in length 

(rith the exception of the 8erobrrke connector, which ir 10 feet 

long). The derign of the JlEPS vehicle requirer a total of four 

5-foot long and one 10-foot long connectors; only two 5-foot 

long connectore 8nd the 10-foot long connector will remain on the 

vehicle during 8erobr8king. For the total mass of  the connec- 

. torn, 

(2°nm12.!3 ft) x (0.08333 it) x (length) x (173.4 lbn/fta) 

ma18 for Earth configuration (lbn) = 1135 x 30 ft = 34050 

m8eo for Harm configuration (lbm) = 1135 x 20 ft = 22700 

3 
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Tot81 Vehule nor8 

Uiing the individual c8lcul8tionr given 8bove, the tot81 

nmrr of the MEPS vehicle can be determined: 

rtringerm (43.37 lbn/ft 30 ft) = 1305 lbrn 
bulkhead (4 118.26 lbm) - 475 lbm 
cylinder (283.83 lbm/ft 30 ft) = 8515 lbrn 
C8pr = 3990 lbrn 
tot81 m8eS 1 13845 lbm 

Satellita/CIC: 

rtringere (43.37 lbn/ft 25 ft) = 1089 lbrrc 
bulkhead (3 118.26 lbn) = 3S5 lbm 
cyllnder (283.83 lbn/ft 25 ft) - 7100 l b m  
capr = 3550 lbm 
tot81 1811 * 12100 lbm 

SQCOnd8ry Propulrion: 

rt ringerr (43.37 lbn/ft 10 ft) = 435 lbn 
bulkhead ( 2  118.26 lbm) - 240 lbm 
cylinder (283.83 lbm/ft 10 ft) - 2840 lbrn 
C8p8 = 3550 lbn 
tot81 I888 8 7065 lbrn 

Haln Propulsion: 

rtringerr (43.37 lbm/ft 70 it) * 3040 Ibn 
bulkheed ( 5  118.26 lbm) = 595 lbrn 
cylinder (283.83 lbn/ft 70 ft) * 19870 lbm 
C8p8 = 3550 lbm 
total nree *. 27055 Ibm 

Polar Lander: 

rtringera (43.37 lbn/ft 50 ft) = 2170 Ibm 
bulkhead (6 118.26 lbn) = 710 lbm 
cylinder (283.83 lbn/ft 50 ft) = 14195 lbm 
cape = 3550 lbn 
tot81 ma68 * 20625 lbm 

Total Vehicle (Structural ?lees): 

Earth departure 
Herr arrival 

4 

1 111,500 lbn 
1 67,100 lbm 
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PROPOSED STRENOTH ANALYSIS 

The following 8n8ly8ie 8pprO8Ch W i l l  be urad to find (0) 

the proper material for the rtringerr, module ekin, 8nd bulk- 

he8drt (b) the correct m8teri.l 8nd thicknerr of the connectorr; 

8nd (c) the m8teri.l comporition 8nd overall number of pine for 

module connectionr. 

A complete finite element model for the MEPS vehicle is 

being phced on I¶SC/pal. Thir model include6 the proper lengths 

of the moduler and connector8 (using aluminum 81 the initial ma- 

teriml for all componentr) and the prylord mare inside each 

module. The force caeee for dynamic analysis of the eyeten are 

being obt8ined from the propulrion and orbital insertion 

8nrlyrer. There c8ee8 will include thruet from the initial de- 

parture burn, acceler8tion 8nd thruet from the deceleration burn 

to inoert into Martian orbit, 8nd the acceleration 8nd drag from 

the maximun-force 8erobraking PIPI. The model and forces will 

be tranelated into 8 NASTRAN input file ueing a program available 

on MSWp.12. 

NASTRAN rill be executed uring the input caees outlined 

above 8nd the output will be evaluated; to utilize this evalu- 

ation, the following procedure should be applied. If the evalu- 

ation 8howe that the rtructural integrity of the connector is in 

doubt, two caeer rhould be run. Firmt, ume aluminum for the 

module and a metal matrix conpoeite tMMC) for the connector; 

S 
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recond, use aluminum for both componentr but increase the 

thicknerr of the connector. If the evaluation 8hOWS quertion In 

the module’o strength, the following runa will be conducted 8e- 

quentlally until a proper eolutlon ir reached: (1) increase the 

rtlffener and bulkhead rizes (areas); (2) change the material of 

the module to ?lnC and uae the original rtiffener and bulkhead 

8he8  alone; (3) ure aluminum for all component8 but increase the 

thicknerr of the module; 8nd ( 4 )  increaoe the 8iZe8 of all com- 

ponentr while rtill uring aluminum. 

Once the proper rizes for a minimum rtrerr on the entire 

vehicle have been determined, an analysis technique outlined by 

R. E. Peterron in Strarr Concentratio n Derian Factors (Wiley 

Prerr, 1974) rill be ured to determine the rtrers in pin hole 

of a connector. From thir information, strength or failure of 

the connection can be determined. If the pin shows failure, then 

the material of the pinr must be changed; however, if the pin 

hole indicater failure, then the thicknesr around the hole will 

be lncreared. A l r r o  from thio otretas information, and sone 

areirtance from Dr. W. A. Footer, Jr. of Auburn Univerrity, the 

minimum amount of pin connectionr can be determined. 

6 



ANALYSIS OF EARTH-MARS TRAJECTORY 

After HEPS ham been noved to the ecliptic plane, a 

propulrive burn will be conducted to start the vehicle on the 

journey to lfarr. A Wohmann (mininun energy) tranrfer will be en- 

ployed to 8ave fuel, although the tine of flight will be ex- 

tended. Thir rection will introduce the analyrir of the Earth- 

Mar8 trajectory, including the nagnitudea of the required propul- 

6ive burn6 and the deternination of the time of flight. - 
The remi-najor axir of the tranrfer ir defined as 

8~ = % = ( F a  + r6) = %*(4.908 Ell + 7.477 Ell) ft 

8r 6.193 Ell ft 

To determine the propulrive burne for the rtart of the 

trmnrfer, the approach to the problem nurt be considered. The 

tranrfer between Earth and Herr will require determination of 

relative velocitier, 8s the mituation ir not 8 rimple transfer 

between two orbitr about the mane body. Now two bodies must be 

t8ken into account--the Earth and the run. 
. 

The velocity of the vehicle relative to the sun can be ex- 

prersed in term8 of  valocitier about earth: 

V . * f ,  = V@ + Vrn, f@ = V@ + v, 
where V O  ir the hyperbolic B X C ~ ~ I Y  speed. Thle speed can be @x- 

prersed as 

v, = vrn*/o  - V@ 

7 
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A fundrmmntrl eqU8tiOn ured in 8rtrodynrmicr i 8  the Vi8-ViV8 

equrtion. Thir equrtion 8llowr the calcul8tion of 8 velocity 8t 

8 point in an orbit if the parameters of the orbit are known; 

v J p=tr 2 - 
8 

vhere p ir the gravitrtional parameter of the body (planet) which 

influencer the vehicle, r ir the dirtance from the body where the 

propulrive burn $6 8pplied, and 8 ie the memi-m,rjor axis of the 

trrnrfer ellipre. 

Applying the Vir-Viv8 equ8tion to find the velocity nf the 

vehicle relative to the run, the required inputs are 

= 4.687 €21 ft' /8QC' 

re = 4.908 Ell ft 

8 = 6.193 E l l  ft 

The rerulting velocity is 

V.. to = 107,383.46 ft/rec 

The velocity of the Earth is calculated by assuming the 

Earth ir in 8 circular orbit about the Bun. Using the equation 

for velocity in a circular orbit, 
n 

and the appropriate values given above, 

Va = 97,722.64 ft/sec 

The hyperbolic excese speed can now be determined: 

v, = v..,, - v* 
= (107,383.46 - 97,722.64) ft/sec 
f 9660.82 ft/8eC 

8 
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The burnout velocity ir expreraed 80 

Vb e = j v  
At an r8diU8 of  22,567,193.75 ft (3714.153 n RI) from the center 

of the Earth, with 

= 1.408 E16 ft'/8eCa 

the burnout velocity h8s the value of 

V b e  36621.86 ft/rec 

The velocity of the vehicle relative to the Earth ir given 

by the expreorion for circular velocity, uring the gravitational 

prrameter for the E8rth rnd the radius of 22,567,193.75 ft: 

Va.re = 24,978.28 ft/sec 

With thir value 8nd the value for the burnout velocity the re- 

quired propul8ive burn c8n be C8lCUhted: 

AV V b e  - Vaa'e 

A V  * 11643.58 ft/rec - 
The equrtionr for analyzing the propuloiva burn to allow 

capture by Harr are similar to thoee u8ed for the Earth departure 

anr1yrir. 

The hyperbolic excess rrpeed is axprerred e8 

IV-I 
The velocity of the rpacecraft relative to the sun i s  determined 

by the Vir-Viva equation, with the following inputs: 

= 4.687 E21 ft*/rac* b 
r 6  - 7.477 Ell ft 
ST = 6.193 E l l  ft 

9 
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Subrtitution into the Vir-Viv8 equ8tion yield8 the v8lue of this 

velocity: 

vm. to = 70,489.39 ft/rec 

The velocity of H r r r  about the run ir CalCUl8ted under the am- 

rumption thrt H8rr i8 moving in 8 circular orbit rbout the sun: 

vb = E 
V b  = 79174.22 ft/rec 

Thur the hyperbolic (cxc~rs  rpeed hrr the value of 

V, = 8684.83 ft/rec 

The magnitude of the propulrlve burn required for H e r 8  cap- 

ture i8 mxpre88ed 8B 

Av v.*,d V p m r  

where V p m r  I8 tho velocity of the mpacecraft at the point of 

Cl08e8t approrch to Jl8rs. Bec8urs the vehicle is on a hyperbolic 

8pprO8Ch to Harm the velocity of the vehicle relative to Hare is 

expr~mred with the  ram^ equation a6 the burnout velocity ueed for 

the Earth departure: - 
p6 = 1.5066 E1S ftJ/seca 

= 12,774,573.5 ft (2102.46 n nil r? 
Vm.,b = 17,643.74 ft/a@c 

The elliptic orbit o f  the vehicle after Mars capture is de- 

fined as 1,640,300 ft (270 n mi) x 108,151,603 ft (17800 n mi). 

Given the radius of H a r m ,  

rb = 11,134,073.5 ft 

10 
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the reri-major axir of the ellipre can be calculated uring the 

following: 

a = Y=C(1,640,500 ft + r 1 + (108,151,603 ft + r 1 3  

a = 66,030,125 ft 4 10,867.37 n ni 

At periapeir tho velocity of  the vehicle is determined 

(uring the Vir-Viva equation) to have the following value: 

V.0 c 14,596.52 ft/.eC 

Uring the exprerrion for the propulrive burn required for Mars 

capture, 

A V  Vm-86 - Verne 

A V  3047.22 ft/rec 

T i m a  o f  F l i a h t  

The time required for the tranrfer fron Earth to Herr can be 

calculated fron the period of the elliptical orbit. The orbit 

period ir defined am 

Subrtitution of the appropriate valuer y i e l d 6  

pa = 4.687 €21 ft=/reca 

8~ = 6.193 El1 ft 

1 = 44,728,466.79 mecondr = 517.7 days 

Since thir period ir the tine of flight for an entire elliptic 

orbit, the required time to reach H r r r  is one-half the period, or 

1 . n  a 258.85 day8 

11 
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PROPELLANT ANALYSIS FOR THE SECONDARY PROPULSION SYSTEII 

The 8eCOnd8ry propulrion ryutem will be employed upon 

8pproach to n8r8. The purpose of thiu engine 8yrtQn i 8  to Slow 

down nEPS to obt8in an elliptic orbit .bout Warm 8nd to help in 

the final rtager of orbit circuleriz8tion. The anolysir pre- 

rented in thir rection concern8 the c8lculrtion of the propellant 

1888 (oxidizer 8nd fuel) for e8ch AV burn 8nd the required volume 

o f  the fuel t8nk8. 

The m 8 8 8 e r  of erch HEPS nodule which will be placed into 

orbit 8bout Harm 8re prarented below. 

include propellant. 

Asrobrake 

Satellite Syrtem 

CIC 

Structure 

There valuer do not 

12,000 lbm 

65,000 lbn 

3,500 lbn 

3,000 lbm 

67,100 lbm 

The total m u s  of HEPS excluding propellant ie 140,000 lbm. 

Four AV burn8 will be required during the circularization 

procerrs at Harr. The firet burn will place the HEPS vehicle 

ryeten into 8 highly elliptic orbit about Hare. During the 

appropriate orbit a second AV burn will be performed at the orbit 

aporprir to lower the perlapsir into the Martian atmoephere. 

Following aerobrtaking, a third burn moves the periapsis out of 

12 
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the rtmorphere, rnd the fourth AV burn will 

circulrrizrtion by 8djurting the 8parpsis. 

of these burn8 will now be presented. 

Burn 1 (orbit capture) 

Burn 2 (lower perimpsir) 

Burn 3 (rtire periapris) 

Burn 4 (8djUst 8poapsirr) 

provide final orbit 

The C8lCUhted V8lUe8 

3047.90 ft/rec 

75.1214 ft/rec 

301.6568 f t/eec 

12.1129 ft/8eC 

The secondary propuleion syrrtem rill use three engines 

rimilar to the Sp8ce Shuttle Orbiting Hrneuvering System (OMS). 

Theme engine8 h8ve 8 8peoific thrurt of 280 reconde. With the 

help of an equation relating the burn to the rpecific thrust and 

initi.1 8nd fin81 masrea, the propellant 111.181 (initial ma88 

before burn) required for each burn can be calculated. 

aV = 1rp.g. =lntH, /H, 1 

n, = n , = e  (Av/f8pmg. 

Urn* of thir equation rill begin the propellant analyris 

required for the rrecond8ry propulrion ryrrtem; for each burn the 

mami of the propellant (oxidizer and fuel) murt be determined. 

The final vehicle n8rr ir 140,000 lbm. Subrtitution of this 

nasr and the value for the AV burn (12.1129 ft/eec) results in 

the total vehicle nmmr prior to apoapeirr adjumtment (or, fol- 

loving periapais raising): 

(12.1129/(280.32. 174) 1 ?la, = He, = (140,000 1bnl.e 

n, a 140,188.36 Iba 
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The propellant nor8 required for apo8prir adjustment I s  deter- 

nlned rinply by rubtractlng the total naer follovlng adjurtnent 

iron the naem prior to thO naneuvert 

no, = (140,l88.36 - 140,000) lbn 

no, = 188.36 lbn 

Following thlr procedure, the propellant name breakdovn I s  given 

in the accompanying table. 

Propellant Ha80 Required For q V  Burn8 

Burn 
Nunber 

1 

2 

3 

4 

AV Total Vehicle Propellant Waer 
(ft/8=) Bass (lbn) (lbm) 

3047.90 205,026.35 58,850.44 

75.12 146,175.91 1213.86 

301.66 144,962. OS 4773.69 

12.11 140,188.36 188.36 

Note that the total vehicle mamm on approach to Mars is deter- 

mined to be 203,026.35 lbn. The total naee of the propellant 

ured during the AV burnr l r r  69,026.35 lbm. 

To crlculate the m a i m  of oxidizer ( N . 0 . )  and fuel (WMH) the 

oxldizer/fuel ratio (1.65) rill be used. Every 1.65 parts o f  

oxidizer lr accompanied by 1 part of fuel, for 8 total of 2.65 

prrtrr of propellant. From the ratio, 

naer of N.0 ,  = (1.6S/2.65)*Wp 

m a m e  of WMH = (1.0/2.6S)-Hp 
- 

14 



I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

For the total ~ a m 1 )  of propellant given above (65,030 lbn), 

Of W.0. = 40,491 lbn 

naam of I¶" = 24,540 1Bn 

The voluwa of the nitrogen tetroxide and mono-methyl hydra- 

zine are calculated with the equation for danrity: 

Volume = 

where 

I 94% 
5 - w  = 

Uming the oxidizer 

volunar are 

= 
4% 04  

+,PI, = 

narr/denrity 

85.50 lbm/fta 

53. 83 lbmlft' 

and fuel marme8 given above, the respective 

473.57 it* 

455. BB ft' 

The rhape of the tank. can now be determined. If cylin- 

drical tankm (29 ft. diameter) are wed, the length may be cal- 

culated uring 

k = V/(n*R*) 

For the nitrogen tetroxide, 

%o* = 0.965 foot 

and for the nono-methyl hydrazine, 

L,, = 0.929 foot 

Note that the required length is only one foot, which is very 

impractical . 
Spherical tanks rill now be conridered. For the radius of 

the tank, 
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C8lculrtIon of the rphere r8dii for the oxidizer 8nd fuel tanke 

yieldr, rerpectivcly, 

= 4.835 feet 

RH, = 4.774 feet 
$zo$ 

From thir 8nrlyrir the rpherical tank is the optimum de8ign. 

t8nk8 c8n be cont8ined ride-by-ride rithin the cylindrical cow 

p8rtment of the HEPS vehicle) the r8dii of the spheres may be ln- 

creared to five feet for emee of conrtruction, thus providing for 

8 compartment 10 feat in length with sufficient room for the 3 

engines. 

The 
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ANALYSIS OF THE XAIN PROPULSION SYSTEX 

The following section containr the anaiysir of the enginerr 

conrldered for XEPS. Four engines were compared on the basis of 

thrurt, rpecific thrurt, weight, and burntime; the Space 

TFanrpOrt8tiOn Hain Engine (STXE) warn choren for the main propul- 

sion ryrten. The neceeeary data (propellant naer and volume, 

module length/tank 8129) is prerented for the STHE, and a staging 

anrlyrir ir rhown. - 
Four engine8 were COnp8red In the analyrrir of the main 

propulrion ryrten--the J-2, RL-10-A-1, Space Shuttle Hain Engine 

(SSXE), and tho Space Transportation Main Engine (STXE). The J - 2  

war ured for the third rtage of the Saturn rockete. The original 

RL-IO engine war ured for the early Saturn rockets, and hae seen 

ure on the Titan; the RL-10-A-I is more of an engine design a6 

thir engine har not been produced. The SSME ir currently in 

operation on the Space Shuttle orbitere, while the STHE is a 

eecond generation SSHE-baeed engine which also hae not gone into 

production. 

By uring Newton'r Second Law, and ameurning the initial m a s s  

(engine and propellant) to be equal, the four engine candidates 

can be compared: 

C F = T = m.a 

X m d V  T r -  dt 

17 



Revrltlng the latter equation an rn exprerrlon for time, 

H*dV dt - T 

Thlr flnrl equation ir ured for calculation of the burn time of 

erch engine. Note thrt the conprrioonr vere mrde on the b88i8 

of thrurt l e v e l s  of approxinately equrl nrgnitudee; for rpproxi- 

nately 450,000 lb of thruat the appropriate number of engines 

murt be considered. 

J-2 Thrurt 
Imp 
Ha88 
Burn tine 

200,OOfr lbf x 2 enginem 

3480 (6960) lbm 
635.53 rocondr 

418 reconds 

total 118199 leaving orbit = 702588.2 lbn 
delta-V burn required = 11641.26 ft/sec 

Thrust 
Imp 
nrrr 
Burn time 

SSnE 

STHE 

Thrurt 
ISP 
narr 
Burn tine 

Thruet 
ISP 
narr 
Burn time 

15,000 lbf x 29 engines 
433 recondr 
298 (8642) Ibm 
584.40 eeconds 

470,000 lbf x 1 engine 
433 reconde 
6700 lbn 
540.90 seconds 

435,000 lbf x 1 engine 
449 seconds 
7455 lbn 
584.40 secondo 

A rhort duration burn time is dsrirable because of the 

decreased rirk of course deviation during the burn (ref 3). The 

rhortart burn time is achieved by the engine with the greatest 

18 
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thrumti by the above data thir engine ir the SSHE. The next 

loremt burn timo occurr with the RL-10-A-1 enginem and the STHE. 

The RL-10-A-1 was found to be unfeaeible mince 29 unit8 are 

required to obtain a comparable thruot level. Although the STHE 

ham a longer burn time thrn the SSHE, the STHE in designed to be 

more relirble and lerr expenrive than the SSHE (ref 2); thur the 

Space Tranrportation Main Engine ir selected over the Space 

Shuttle Wain Engine. 

Comparison of the STHE to the 3-2 engine ir based on thrust, 

weight, burn time, and deuign. The two J-2 enginer produce 

400,000 Ibf of thrurt and weigh 6960 lbm; the STHE weighs 

elightly more but produccr greater thrurt (435,000 lbf). The 

burn t i m e  of  the STHE i8 conriderably lees then that of the J-2. 

In 8ddition, the STHE ia baing deeigned specifically for reurabi- 

lity and rpace applicrtlonr (one design o f  tho STHE nozzle ex- 

pandr the flow at the exit to the optimum pressure for operation 

in the vacuum of epece). 

STHE Enaine f nf ornatio n 

The engine data required for the analysis of the WEPS . 
mierion will now be prerented. Sone of the engine particulars 

have been previourly 8t8ted. 

I6p = 449 eecondr 
ThruBt = 435,000 lbf 
Harm = 7455 lbm 
Oxidizer/Fuel Ratio = 6.0 
Area Ratio = 59/141 
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The initial 11811 of the MEPS vehicle prior to leaving E8rth 

may be c8lCUhted uring the following 8nalyri6: 

AV = Iip=g,=ln(nr / H,) 

?I, - n, =e (4V/(Isp=g, 1 )  

The vehicle 11811 before the engines 8nd the poler londer oyrtem 

are releared ir 381,505 poundr (1ee previour rection). For a 

required delt8-V burn of  11641.26 ft/rec to begin the Earth-Hars 

tranof er, 

(11641.26/((449)=32.174)) HI = (381,505 lb)=e 

HI = 854,020 lb 

The maus o f  the propellant ir the difference between the initial 

11811 (vehicle plue propellant) and the final masr (vehicle only). 

For the given conditionr, 

n, = n, - n, 
He = 854,019.4 lb 0 381,501.4 lb 

M e  8 472,518 lb 

The oxldlzer/fuel ratio for the engine ie given ar 6.0. 

Every mix porta of liquid oxygen must be accompanied by one part 

of liquid hydrogen; thus a toto1 of eeven partr of oxidizer and 

fuel will be ovalloblo. Uring this development, the masses of 

the liquid oxygen and liquid hydrogen can be determined. 

HLO. = 617 H, = 617 472,518 lb = 405,015.43 lb 

HkH. 0 117 He = 67,502.57 lb 

Ueing the denritier of the oxidizer and fuel, and the rela- 

tionrrhlp between density and volune, the volumes of the liquid 
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oxygen 8nd liquid hydrogen can be calculated. Knowing theme 

voluwr will mllor the mining of the fuel and oxidizer tank8. 

Y ~ o e  71.07 lb/fta 8t -297O F 

f L n e  = 4.42 lb/fta at -423O F (5t4-23) 

The denrity is defined 81 the maor per unit volume. Therefore, 

'VL.. = 405,015 lb (1 fta/71.07 lb) 5699 fta 

4~ 0 .  = 42,727.7 g8UOnr 

 ne 67,503 lb (1 fta/4.42 lb) = 15,271.9s fta 

Y N .  = 114,499.8 g8llOn8 

A prerrura verrel. ir normrlly rpherical, or cylindrical with 

hemirpheric8l endr. The diameter of the HEPS vehicle must be 

conridered to determine which type tank will hold the liquid 

oxygen 8nd hydrogen. For the diameter of 25 feet, the volume of 

8 8pheriC.l t8nk ir 

~=4/3*mm(12.5 ftla * 8181.23 fta 

This volume fallr between the rmuired voluner for the oxidizer 

8nd fuel. Thur, a rpherical tank will be employed for the liquid 

oxygen, rnd t h e  cylindricrl/hemirpheric81 tank will be used for 

the liquid hydrogen. 

For the calculated volume of liquid oxygen the correeponding 

tank rize ir determined to be 

volume = 5699 fta = 4/3*n-Ra 

R = 11.08 ft 

If boil-off of the liquid oxygen (12.0 lb/hr) is considered, the 

actual rize of the tank must be increesed to account for the 
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expendable oxidizer. B a m d  on a thirty day tranrport 8nd con- 

mtruction period, the voluw of the LO. lort to boil-off i8 

m(188 = (720 hr8)*(l2.0 lb/hr) = 8640 lb 

volume = (8640 lb)=(l fta/71.07 lb) = 121.57 fta 

Thir additional volume yield8 an increaem in the diameter of the 

rpherical tank to 22.5 fHt. 

The volume of liquid hydrogen ir much larger than that of 

the liquid oxygen and, a8 mentioned previouoly, a cylindrical 

tank with hemispherical endcaps will be required. For the tank 

to fit rnugly inride the HEPS vehicle (diameter of 25 feet), the 

length of the tank can be calculatodt 

volume = 4/3=n0(12.S)a + n0(12.5)**h = 15,271.95 fta 

length = h = 14.4 ft 

The tank mize will increaee under conrideration of boil-off. The  

rate for LHe ir 16.0 lb/hr, and for the 8ame thirty day period 

u8ed earlier, 

m a 8 8  = (720 hrr)*(l8.0 lb/hr) = 12,960 lb 

volume = (12,960 lb)*(l fta/4.42 lb) = 2932.13 fta 

The change in the length of tho tank is now determined: 

length = h = (15,271.95 + 2932.12 - 8181.23)/490.87 
h = 20.45 ft 

Since the endc8pr have 8 radiur of 12.5 feet, the total length of 

the LH. tank io 

2s ft + 20.45 ft = 45.45 ft 
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If the two tank6 are mounted bulkhead to bulkhead, the total 

length of the main propuleion module ir 

4S.45 ft + 22.5 ft = 67.95 ft 

Stroina Analvsie 

In order to determine the optimum number of etagee for Earth 

departure, the following equation io ured: 

The reeulte of the analyeis performed on the STHE are plotted 

below. From thir plot, one rtsge ie ehown to be the optimum con- 

figuration for the engines. 
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AEROBRAKE ANALYSIS 

The aerobrake will be ured for orbit circularizrtion about 

Harm. Thir rection vi11 prerent the determination of the weight 

of the aerobrake and the calculation of the propulrive burn8 re- 

quired for the circularization analysir. 

Weiaht Deter minstina 

Uring information provided by B i l l  Willcockron, OTV Program 

Manager at Xartin Harietta Aerorpacc *Denver), the moms of an 

aerobrake c m  be 8ized with the aerobrake area. From values pre- 

rented in reference 7, 

Area = 142 ita 

m a r 8  of rigid rurf8ce inrulation (RSI) - 401 lbm 
m r r r  of flexible surface inrulation (FSI) - 8890 lbn 
rtructure weight = 11032 lbm 

The weight of the RSI will remain 401 lbm since e diameter of 25 

feet i r r  ured for the Hartin Hrriettr brake as vel1 ar  the 

propored brake. The weight of the FSI vi11 require a crlcula- 

tion. For the Hartin aerobrake, 

n 
4 A - t (142 it)' - (25 ft)'] = 15345.695 ft' 

Obtaining a weight to area r8ti0, 

= -57931 lbm/ft* weight I 8890 lbm 
area 15345.895 ft' 

For the HEPS aerobrake, 

A = f(95 ft)' - (25 ft)'J = 6597.345 ft' 4 
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The weight of the FSI ir calculated uring the ~ i g h t / 8 r e 8  ratio 

previourly determined: 

Wvo ( 0  57931 IbWft' ) (6597.345 ft' 1 

To determine the weight of the rarobr8ke rtructure, rize the 

11032 lbn W . t * . . t  = 
3 4 .  (95 ft)' 54. (142 ft)' 

ProDUlri ve Burnr Used For Harm Orbit Circular izatioe 

Although aerobraking will be epplied during the HEPS 

mirrion, complete orbit circularization will require propulsive 

burnr uring the secondary propulrion ry8tem. There burn8 auet be 

conridered for three different maneuver8~ lowering the perlapsi6 

prior to aerobraking, and rairing the periapri8 and adjueting the 

aporprir after braking. Calculation of e8ch V will be made by 

applying the Vir-Viva equation: 
- 

v = Jrd'<2/' - l /r )  

where r lr the length of either the periaprle or apoapsis, 

mearured from the center of Haril, and 8 ie the 8emi-major axis of 

the elliptic orbit. 

To decrease the periapris, the burn will be applied at the 

apoaprir of the initial elliptic orbit about Hare. The deelred 

periaprie altitude h88 been determined to be 314,976 ft (51.84 

nautical miles). The lengthe of the initial periapeie and apo- 

apris are 120,398,076. S ft (19848.27 n m i  1 and 12,774,573.5 ft 

(2102.46 n mi), reepectivaly, mearured from the center of Mars. 
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The length8 of the 8emi=mrjor race8 of the two different 

elliptlcrl orbit8 (maw initial apoapsir, two different peri- 

aprer) 8re determined: 

r, = 12,774,573.5 ft (2102.46 n mi 1 

8 v ,  = %(r. + r, 1 = 66,686,325 ft ( 10,975.37 n mi 1 

r. = 11,449,049.5 ft (1884.31 n mi) 

= 66,023,563 ft (10,866.29 n mi) 
8 7 ~  

Applying the Vim-Vivr equation, the velocltier at the epoapsir 

for each elliptical orbit are crlculrted: 

2 1 'f2 - ft 
31 [(1*5066 "' =).(120598076.5 ft 66686325 St)] 

2 1 '12 - *t 
V8 = ~ec)~(120598076.5 ft 66023563 ft '1 
V. = 1471.85 ft/rec 

The propulrive burn required to lower the periaprir le determined 

by taking the difference between the epoapeis velocities given 

above t 

A V  = V8 - Vt = -75.1214 ft/rrec 

The minue rign indicater the burn will be applied in the direc- 

tion opposite that of the HEPS vehicle (retrofire). 

The mame rnalyrris ir performed for the burne to raiee the 

periapsie and aporpris. The necessary input8 and output are pre- 

rented: 
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to r8ime the ~ r i 8 p m I m  to 1,640,500 ft (270 n m i 1 8  

r. = 12,717,736.74 ft (2093.11 n mi 1 0-  from program 

r. = 12,774,573.5 ft (2202.46 n m i )  

8t 12,746,155.2 ft (2097.79 n mi) 

to r8ifle the 8poepsir to 12,774,573.5 it (2102.46 n mi) from 
the canter of ?lares 

r. = 12,774,573.5 it (2102.46 n mi 1 

r. * 12,717,736.7 ft (2093.11 n mi) 

at = 12,746,135.2 it (2097.79 n mi 1 

r. = 12,774,573.5 ft (2102.46 n mi 1 

I +  = 12,774,573.5 ft (2102.46 n mi) 

A V  = 12.1129 ft/rec 
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DERIVATIONS FOR THE AEROBRAKINO PROGRAM 

The program included in Appendix A is U6ed to execute the 

iter8tionr for the aerobrmking proceer. With inputs concerning 

the orbit of a vehicle about Harm, and parameters of the aero- 

br8ke, the complete aerobraking perrrge can be analyzed. The 

output prerentm the time for aerobrrking, the drag force% that 

act on the merobrake, 8nd the parameters of the final orbit. 

The program rquirer reverak deriv8tionr--the location of 

the interrwtion of 8 circle (Herr 8tmorphere) end an ellipee 

(vehicle orbit); the length of regnent between the intersection 

points (total dirtance travelled within the atmosphere); and the 

dr8g coefficient of the rerobrake. 

Jntersection Pointr 

The ~quationr of an ellipre and a circle are given, reopec- 

tiVely, 88 

( x  - ae)' + y a  = r* 

where a is the memi-major axle and e 1s the eccentricity of the 

orbit; and a*@ ir the location of the center of the circle repre- 

renting the Martian 8tnosphere (lee., the center of flare). In 

addition, the trajectory equation, which gives the location of 

any point on the ellipfse, le defined am 
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In the above equation 811 Of the Variable8 (memi-htU8 rectum, 

eccentricity, and argument of periaprir) are given parameters of  

an elliptic orbit. 

Solving for y* in the two equatlonr, 

Equating the y* termr, 

L S  

- x' + 2aex - a +a 

Uring the quadratic equation to rolve for x, 

2ae *, ,/4aaea - 4-(ba - ra + a*ea)-(l - b a / a 2 )  
i 

2*(1 - b'/a') x =  

Chooring only the negative value of the rquare root (due to the 

geometry of the problem), the x-location of the interiection 

pointr in known. Subrtitution of x back into rn exproeaion for y 

will yield the complete location of the points. 

Seanent L m a t h  

The valuer of x and y obtained ae the intersection points 

rill be used In thl8 derivation. Tho angle created between radii 

from the center of ?far8 I8 denoted am 8 ,  m I s  the segment length, 

R l e  the radlu8, c l e  the chord of the arc, and d I s  the distance 

from the center of Mar8 to the x-porltion of the intersection 

pointe. 
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Uaing the geometry of an arc, 

f 
I 

Finally, 

e = RB 

Thus the eegment is known, and this value can be used to deter- 

nine the change in velocity due to drag forces during aero- 

braking. 

Determination of the Draa Coefficient 

From hypersonic crquatlonr for a cone, the drag coefficient 

in given as 

C, = 2:ein* e, + (1 - 3-ein2 &)*sin2 a 

where 

0, = cone half-angle 

a * angle of attack 

For the HEPS mission the dearign for zero angle of attack (using 

momentum wheels and the cone's inherent stability) allows cancel- 

lation of the second term. Therefore (1:681), 

c, = 2-sin2 e, 
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ANALYSIS FOR THE OBSERVATION SATELLITE 

Thi8 meetion rill contain the calculations of the propulsive 

burn8 requird for orbital tranrfer of the ratollite. In 

addition, the determinrtion of the solar array panel (applicable 

to the CIC rr rell) will a180 be prerented. 

v 
A tranrfer between a 1,640,500 ft (270 n mi) orbit and a 

2,313,105 ft (327.64 n m i )  orbit rill be required to put t h e  

8atellite into the obrervation orbit. For there calculationr a 

Hohmann (minimum energy) tranrfer rill be assumed. 

Calculation of the altitudes ir the first rtep: 

rb = 11,134,073.5 ft (1832.47 n m i )  

rI = (11,134,073.5 + 1,640,500) ft 

= 12,774,573.5 ft (2102.46 n mi) 

rf = (11,134,073.5 + 2,313,105) ft 

= 13,447,178. S ft (2005.25 n mi) 

The gravitational parameter of Harm ir given ae 

p6 = 1.3066 E15 fta/sec2 

For a Hohmann tranefer, firat calculate the circular 

velocitier of the two orbitor 

1*5066 = 10,859.7819 ft/sec j 12774573.9 ft 

fta /eec2 = 10,584.8341 ft/rec = 1 13447378.5 ft 
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Nor determine the remi-major axir of the tranrfer ellipre: 

a? = %*(rl + rp) = 13,110,876 ft (2197.82 n mi) 

To obtain the propulrive burn required to leave the initial 

orbit, the Vir-Viva equation of aatrodynamlcs (oee trajectory 

rnrlyrir rection) rill be ured. The rerult i r  

10,998.2401 ft/reC v+ I 
The burn I8 found by rubtracting the circular velocity from the 

velocity at the perlaprir: 

AVI = VT, Va = 138.4 ft/rrec 

The 8peed at the apoapslr and the propulrive burn required 

to achieve the final circular orbit ar0 calculated in a oiallar 

manner I 

10, 448.0164 ft/8eC 
V T z  

A VI = 136.64 ft/8eC 

Uring there burnr the mar8 of propellant required for the 

tranrfer can be calculated (the proper equation nay be found in 

the rectlon on the recondary propulelon uystem). Firrt obtain 

the mas1 ratio for each AV: 

The final marr of the ratellite in the obeervation is epproxi- 

mrtoly 3900 lbn. Backing out the maem required by the second AV, 

n, - ne + n, 
i.ois3.n, - n, + n, 
0.01S3m(3500 Ibm) = n, 
I¶, = 93.55 lbm 
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Obt8lnlng tho propell8nt n886 urod In tho flret AV with the 88me 

The tot81 1.181 of p r o p l l m t  lr 

(ref 5 )  

vhere 

(9.6%) eover outeut of array 
power input of man 

7 = -------_ ---------- 
F = run-total of array derlgn and degradation factors 

nirc.  srrembly 8nd degradation 0.9s 
r8di8tion (for rillcon cellr) ' 0.74 
configuration (flat plate array) 1.00 

F = 2.69 (58123-125) 

r = angle betveen sun'u reye and the normal to the 
p.nd 

r = o  
COI r = 1 

Calculation of the area yielde 

1500 w 108 f t2  (54.14 W/ft* )*(0.096).(2.69)-1 
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CALCULATION OF APPROXIHATE MASS OF HARS LANDER 

To calculate the approximate marr of a Hare lender the 

ma88ee of the nojor conponentr of the lander murt be ertimated. 

There major componentr are (1) the Sample Return Vehicle ( S R V ) ;  

(2 )  the roverr3 (3) the automated laboratory; ( 4 )  an upper and 

lower aerorhell; ( 5 )  a platform for the SRV to rit upon; 

( 6 )  landing gear; and ( 7 )  a recovery oystem conristing of a 8olid 

rocket motor and three parrchuter. 

Barr of the S. mole Return Vehic le  (SR V) 

The mamr of the rolid rocket boorter that will propel the 

SRV can be obtained from a program written to einulata the launch 

of a rolid rocket boorter; boorter rpecificationr include the 

fuel, payload, and planet of launch. T h i r  program, titled 

"Stager", can be ured to 8tudy the effect of changing propellant 

mare on the final altitude and velocity achieved by the rocket. 

To ure astagera (listed in Appendix A ) ,  the following para- 

meter8 for 8 launch murt be known or arrumed: 

1. the comburtion temperature of the propellant ( O R )  

2. the denrity of the propellant (lbm/in*) 

3. the propellant crorr-roctionrl diameter (feet) 

4. the propellant burn rate (in/sec) 

5. the rpecific heat ratio and perfect gar constant 
for the burning propellant 
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CMffilNAL PQGE IS 
OF POOR QUALITY 

6. the r8diU8 of the phnet (nomi. 1, the latitude of 
hunch rite (degreer), the 8ngul8r velocity of 
the pl8net rurf8ce, 8nd the gr8vitstional 8ccel- 
eration on the planet rurface 

7. the derired 8ltitude rfter launch 

8. the m8er of the final p8ylord to be put into orbit. 

The firrt eeven p8r8metere were derignrted for a launch from 

8 pole of W8rr of 8 rocket propelled by the propellant DB/AP- 

HWX/AL (Double B8re/Aluminum Perchlor8te-Cyclotetramethylene 

Tetr8nitr8nine/Aluminur),  relected for it8 high combustion temp- 

ermture (6700 degrees Rankine) 8nd burn rate ( - 5 5  in/sec). Tho 

rocket boorter w 8 8  deeigned to have 8 propellant cross-sectional 

8re8 of 2.91667 feet and 8 deadweight retio (ratio of booster 

non-propell8nt 11888 to tot81 boorter m r r r )  of 0.12. The darired 

orbit w 8 8  rpecified to be circul8r 8t 8n altitude of 270.0 nau- 

The eighth parameter (pryload mass) was designed to be a 

lightweight vaerel that would carry up to 100 lbm of Hartian soil 

rnd rir rrmplerr in refrigerated chamber; on board t h e  s h i p  

would be 8 emall reaction control system and an aeroshell. The 

~ 8 8 8  of thir vehicle is ertimated to be 1000.0 lbm (200 lbrn for 

the refrigeration chmber, SO0 lbm for the reaction control eys- 

ten, 100 lbm of 68mph8, SO lbm for the aeroshall, and 150 lbm 

for onborrd guidrnce and control computers). 

Once these parameterr for the SRV launch have been speci- 

fied, a 'target burn time" (which l s r  equal to the mass of pro- 

pellant divided by the mass consumption rate) I s  entered into the 

'Strges' subroutine named 'Launch.. This eubroutine is a nurneri- 
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c8l integration of the equ8tion of notion for 8 ringle-rtage 

rocket being hunched in 8 gravity field, and will fire for the 

entire .t8rget burn time' unlerr the propeilrnt ir completely 

conruned or the target 8ltitud~ i8 reached. A 8  the hunch pro- 

ceedr, the rprcecr8ft ir rot8ted through 8 'pitch program', 

8rbitr8rily 8 e h ~ t 0 d  to v8ry the direction of the rocket's 

weight vector 88 itm 8ltitude increaree. 

To optimize the prope118nt 1811, and thur the initial moos 

of the SRV, five plot8 of d8ta from 'Stages' are conetructed (eee 

Appendix B). 

1. 

2. 

3. 

4. 

5. 

There plotrr show: 

vrri8tion of final 8ltitude with 'target burn time' 
(Figure B. 1) 

variation of final velocity with 'target burn time' 
(Figure 8.2) 

variation of  payload ratio (p8yload masr/initial 
ma881 with 't8rget burn time' (Figure B.3) 

vari8tion of aexcess ma88' (mas8 excluding payload 
m 8 8 8  8fter launch) with 'target burn time" 
(Figure B. 4 )  

variation of f i n d  acceleration with "target burn 
time' (Figure B.5) 

The firrt plot ir umed to determine a minimum value for . 
'target burn time' (TBT) by observing that below a particular 

value for TBT the deeired 8ltitude i r r  not roached due to insuf- 

ficient propellant 111888. The second plot $e then used to find 

the range of vrlues of TBT above the minimum altitude value for 

which the final velocity ir at laaet sufficient to achieve a cir- 

cular orbit at the derign altitude. 
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ORIGIWL PAGE IS 
OF POOR QUALITY 

The third, fourth, and fifth plotr are ured to find the op- 

tinun value of TBT froa the range of TBT valuer deternined with 

the firrt two plotr. An optimun payload ratio can be 8elQCtQd 

from the third plot) an optimum sexcars metaus can be selected 

from the fourth plot; end an optinun final acceleration can be 

relected iron the fifth plot. 

For the SRV the payload ratio was optimized becaurre the 

ratio will yield a shorter and leer narrive booster than the 

boorter for which the final acceleration le minimum. From Figure 

B.1 the derired altitude ir reached for TBT greater than or equal 

to 350 recondr. Fron the recond plot the required orbital velo- 

city i r  achieved only for TBTr ranging from 100 to 460 eeconde; 

therefore the optimun range of TBT8 ir  between 350 and 460 

recondr. From the third plot the TBT for the highest payload 

ratio ir found to be 350 recondr. From the fourth plot excess 

m a 8 8  i c r  remn to be a minimum for the optimum range at TBT of 350 

oacondr. Fron Figure B.S final acceleration is reen to be a max- 

imun for the optinun range at TBT equal to 350 recondr. 

The value ured for the payload ratio of the SRV, based upon 

optimization by ure of  sStagerm, is 0.068120. Thir ratio yieldr 

an initial SRV m a 0 8  of approximately 14,700 lbm. 

Has8 of the UDD er and Lower Aeroeh ell 

The massee of the upper and lower aeroshell can be estimated 

by determining the approximate geometry of the aeroshelh and 

eelacting a material with which the eerorhells will be made. The 

material that is selected for the shell must be strong enough to 
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withrt8nd large aerodynamic forcer rnd 8erOthermodyn8RiC he8ting 

incurred upon dercent through the tl8rti.n 8tmorphere. The 

mrximum tempr8ture thrt rill occur on the l8nder during descent 

rill be locrted at the rtagnation point of the vemmel, which Ita 

locrted 8t the center of the lover reroshell. The rtrgnation 

point temperrture thrt the l8nder encounters at rn altitude of 

100 n8UtiC8l m i l e 8  (C8kUl8ted 88 1630 degrees Rankine in Appen- 

dix C )  ir ured to determine the type of material to be used for 

the upper 8nd lover 8erorhell ( a m  8 firrt rpproxination). 

An aouter blanket-* of carbon-carbon heat-tranrfer reeiotant 

tiler, or 8 one-piece carbon-carbon .he&, rill cover the bottom 

of the lover aeroehell. The inner part of the lower aeroshell 

8nd the upper 8eFOrhell rill be compomed of CLAD 2014 aluminum 

81loy (denrlty of .lo1 lbm/ina). tlodaling the upper aeroshell as 

8 conic frurtrum 23 feet high, vith a base diameter of 25 feet, 

8 top di8meter of reven feet, 8nd 8 thicknerr of -30 inches, an 

8pproximrte upper aerorhell volume of 233,989.7 cubic inches and 

8 m 8 r m  of 8pproxim8tely 23,633.0 lbm are determined. Modeling 

the lover aeroehell am a regment of 8 ephere with a base diameter 

of 25 feet, a regment height of five feat, and a thickneeta of .30 

inches yields an approxirrte lower aerorhield volume of 20,722 

cubic incher 8nd a 11881 of approximately 2093.0 lbm. 

m- o f  Platform and L andina Ge ar 

A metal disk twenty-five feet in diameter and one-half inch 

thickneee is ueed to model the platform which the S R V ,  rovers, 

8nd autonomous laboratory eit upon; this platform hae a volume 

38 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 

of 35,342 cubic incher. A rtrong material that can rithrtand the 

effect8 of the exhaurt plume of the launching SRV im needed to 

comprire the platform; AM-355 rtainlerr rteel is ChO6Qn for its 

f8VOr8ble rerlrtance to high temperature and corrorion. AH-355 

rtainlorr rteel ha8 a density of .282 lbm/ina, so the mass of the 

platform ir approximataly 9966 lbm. 

Each rtrut of the landing gear ram modeled ae a quarter-inch 

thick AH-333 rtainlarr steel pipe, one foot in outer diameter and 

five feet long, fastened to a square AH-355 stainleis rteel pipe 

rith r ider  four feet in length and Q thickneso of one-half inch. 

The total volume of each rtrut ir 1857 cubic inches and the 

tot81 mar8 of each rtrut la approximately 525 lbm. The landing 

gear ryrtem rill conriot of four rtrutr 60 the total landing gear 

m a 0 8  is 2100 lbn. 

fl-8 of the Ro vere and Auto mated Labo ratorv 

Each rover8 io to be no more marrive than 2500 lbrn ( S O 0 0  Ibm 

for the tro rover6 on each lander). The mass of the automated 

laboratory rill not exceed 1000 lbm. 

fl-8 of the L ander Recovery Sve tern 

The mare of the recovery oyetem for the lander was deter- 

mined by ure of 8 program rritten by D. Bell. The program cal- 

culatee the optimum recovery ryetea mass, consfeting of one to 

mix parachutes and a rolid fuel retrorocket, for a generic ve- 
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h i c h  Of 8pecifi8bh 1888 (minu8 FQCOVerY 8y8tel 1888) that iS 

l8nding on the rurf8ce of E8rth or Hrr8. The progrrm inpute are 

1. 

2. 

3. 

4. 

5. 

6. 

A ret of 

the 1818 of the vehicle without recovery rystem 

the derired terminal velocity for the main para- 
ohuter 

the number of parlchutes desired 

the rpecific impulre, thrurt, 8nd mas8 fraction of 
the rolid rocket motor used for descent 

the required velocity upon impact with the planet 
murf ace 

the desired height above the ground at which a 
conrtant-velocity dercent of the vehicle begine 
(the rocket i6 fired ruch that the thruet equals 
the weight of the vehicle -- .constant velocity 
falling height") 

plot8 crn be obt8ined by mrking 8 r e r i ~ r  of rune of 

thir program ( roe Figurer D . 1 ,  D . 2 ,  D.3). Theme plot8 are u8ed 

to optimize the main chute terminal velocity, impact velocity, 

conrtant velocity falling height, the m8s8 of the parachute oym- 

tern, and the mar1 of the rolid rocket notor required to land the 

Vehicle. 

The tot81 (approximate) mass of a lander is found to be 

58,500 lbn, excluding the mar8 of the recovery systep. A eet of 

run8 of the optimizing program were made ueing this value of the 

vehicle naar; the rerults can be seen in the figures of Appen- 

dix D. The optimum main chute terminal velocity for this vehicle 

is determined to be 75 feet per eecond. The optimum impact velo- 

city for the vehicle I s  10 feet per eecond (assuming that the 

terminal velocity under consideration for the vehicle is the op- 

timum value). The optimum constant velocity falling height is 
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five feet (888Uling that the termin8l velocity 8nd impact VelO- 

city are optimum valuer. The optimum recovery syrteln 1806 for 

the lrnder (u8ing the 8forementioned Vabrhbler) I8 determined to 

be 88 follow63 

par8chuto 8y8tem m8eS = 1610 lbm 

rolid rocket motor maer = 2639 lbn 

tot81 recovery myrtem ma86 * 4249 lbn 

A more detriled brerkdown of the ma6i of the recovery system 1s 

8hown in Appendix D. Thlr  breakdown ir the final output of the 

optimizing program. 

St.te-nt of ADDrOXi mate To tal Hoes of Ma rm Lander 

A 8  8t8ted 8t the beginning of thir eection, the approximate 

tot81 mean of the nore Lander i m  the 1u1 o f  the mesees of its 

mrjor componentmt 

COHPONENT 

SRV 

Upper Aeroshell 

Lover Aarorhell 

Pla tf orm 

L8nding Gear 

Rover Syetemr 

Liboratory 

Parachute Syetem 

Solid Rocket Hotor 

TOTAL APPROXIMATE LANDER MASS 
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MASS (lbml) 

14, 700 

23,633 

2, 093 

9,966 

2,100 

9,000 

1,000 

1,610 

2,639 

62,749 
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” 

C 

C 

THIS PROGRAH RUNS THROUGH AN AEROBRAKE ANALYSIS OF HARS 
INPUTS ARE HADE IN SI UNITS, AND OUTPUT IS WRITTEN IN 
ENGLISH UNITS 

REAL nu, MASS, HASSE 
OPEN(UNIT=7,FILE=’AEROBRKE.DAT’,STATUS=’OLD’~ 

PRINT+,‘INPUT THE PERIAPSIS ALTITUDE IN km 
READ(6, + 1 PERIAP 

DEFINE THE PERIAPSIS FROH THE CENTER OF MARS 
PERIAP = PERIAP + 3393.5 
PRINT+,’INPUT THE INITIAL SEHI-HAJOR AXIS IN km ’ 
READ ( 6, + ) AINIT 
PRINT+,’INPUT THE DESIRED APOAPSIS DISTANCE IN km 
READ ( 6, ) APOAPF 

’ 

‘ 

CALCULATE THE TIME FOR THE FIRST 1.9 ORBITS BEFORE HAKING 
PERIAPSIS CHANGE (AT APOAPSIS) FOR AEROBRAKING PROCESS. 
THE ELLIPTIC ORBIT FOR THIS PERIOD IS (500 km X 33363 kn) 
SHAJl = . S+ ( (500. +3393.5) + (33363. +3393.5 1 1 

THE GRAVITATIONAL PARAHETER MU (kgA3/secA2) 
nu = 42656. 
PI = 3.141592654 
PERDl = 2+PI+SQRT(SHAJ1*+3/HU) 
TIHE1 = 1.5.PERDl 

CALCULATE THE PARAMETERS OF THE ELLIPTIC ORBIT ABOUT HARS 
USING THE PERIAPSIS FROH INPUT. THIS ORBIT IS ACTUALLY ONLY 
HALF AN ORBIT, HAKING THE JOURNEY FROH APOAPSIS TO AEROBRAKING 
PER I APS I S 
PERIOD = 0.0 
APOAP = 0.0 
CALL PARAHS ( PERIAP, APOAP, AINIT, PERIOD) 
PERDHR PERIOD/3600. 

DETERHINE THE TIME FOR THE HALF-ORBIT FROH THE APOAPSIS TO 
THE PERIAPSIS OF AEROBRAKING 

OBTAIN THE INPUTS FOR THE AEROBRAKING PROCESS 
TIME2 = .S+PERIOD 

PRINT., ’INPUT THE ATNOSPHERIC DENSITY FOR THE ALTITUDE (kg/mA3) ’ 
READ( 6, + 1 RHO 
PRINT+,’INPUT THE HASS OF THE SPACE VEHICLE (kg) ’ 
READ ( 6, + 1 MASS 

HASSE = HASS+32.174/14.57 
PRINT+,’INPUT THE HALF-ANGLE OF THE CONICAL AEROBRAKE (deg) ’ 
READ (6, 1 THETA 
PRINT*,’INPUT THE DIAHETER OF THE AEROBRAKE (m) ’ 
READ(6, 1 DIAH 
DIAH = DIAM/1000. 

THETAR = THETA*PI/lBO. 
PART = l./(TAN(THETAR)++2) 
AREA = PI*(DIAH/2.)**2*SQRT(l.+PART) 

CONVERT THE HASS TO ENGLISH UNITS 

DETERHINE THE AREA OF THE CONICAL AEROBRAKE 

DETERMINE THE DRAG COEFFICIENT OF THE AEROBRAKE 
BASED ON NEWTONIAN HETHODS 
CD = 2.*SIN(THETAR)+*2 

CALCULATE THE ENGLISH-UNIT COUNTERPARTS OF THE ABOVE VALUES 
PERAPE = PERIAP.3280.839895 
AINITE = AINIT+3280.839895 
DIAHE = DIAH*3280.839895 
AREAE = AREA.10763910.42 



RHOE = RHO+O.O01943503S 
THE PERIAPSIS, APOAPSIS, SEHI-MAJOR AXIS, AND AEROBRAKE DIAHETER 
ARE CONVERTED FROH kr, TO ft. THE AREA IS CHANGED FROH kaA2 TO ftA2 
AND THE DENSITY FROM kg/nA3 TO sluge/ftA3. 
TIHTTL = TIHEl+TIHE2 
TIHTLH = TIHTTL/3600. 
WRITE(7, + )  ‘ AEROBRAKE ANALYSIS ’ 
WRITE(7, * )  ’ 
WRITE(7, + I  ’ ’ 
WRITE(7, +) ‘ ’ 
WRITE(7,*)’ HALF-ANGLE FOR CONICAL AEROBRAKE (deg): ‘,THETA 
WRITE(7,*)‘ DIAWETER OF THE AEROBRAKE (ft): ’,DIAHE 
WRITE(7,*)’ SURFACE AREA OF THE AEROERAKE (ftA21: ‘,AREAE 
WRITE(7,*)’ HASS OF SPACE VEHICLE (lb): ‘,HASSE 
WRITE(7, + 1 ’ ’ 
WRITE(7, * )  ’ ’ 
WRITE(7,*)’ ATHOSPHERIC CONDITIONS: ’ 
WRITE(7, * I  ’ PERIAPSIS FROH CENTER OF HARS (ft): ’,PERAPE 
WRITE(7,*)’ DENSITY (slug/ftA3): ‘,RHOE 
WRITE(7, + )  ’ * 
WRITE(7,+)’ INITIAL ORBITAL PARAHETERS: ’ 
WRITE(7, * )  ’ ‘ 

WRITE(7, 1 ’ ’ 
WRITE ( 7,140 1 PERAPE, APOAPE, AINITE, PERDHR 
WRITE(7, + I ’  ‘ 
WRITE(7, ’ ’ 
WRITE(7,+)’ APPROX TINE ( h r )  PRIOR TO AEROBRAKING: ‘,TIHTLH 
WRITE(7, * )  ’ ’ 
WRITE(7, + I ’  ’ 
WRITE(7, * I ’  ’ 
WRITE(7,*)’ AEROBRAKE PROCEDURE:’ 
WRITE(7, * )  ‘ ’ 
WRITE( 7,100 1 
WRITE(7,llO) 
WRITE(7, + ) * 

SUAJ = AINIT 
x = 0.0 
Y = 0.0 
SEG = 0.0 
PHI = 0.0 
ASECTR = 0.0 
TIHTTL = 0.0 

WRITE(7pl30) 

SET INITIAL CONDITIONS FOR VARIABLES PRIOR TO DO-LOOP 

DO 50 I = 1,500 
ECCNTY = (APOAP-PERIAP)/(APOAP+PERIAP) 
SHIN SQRT(SUAJ**2*(1.-ECCNTY**2)) 

CALCULATE THE INTERSECTION POINTS OF THE ELLIPTIC ORBIT 
AND THE MARTIAN ATUOSPHERE 

CALL NTRSEC(SHAJ, SHIN, ECCNTY, X, Y 1 

CALCULATE THE LENGTH OF SEGHENT OF THE ELLIPTIC ORBIT 
ENCLOSED BY THE HARTIAN ATHOSPHERE 

CALL SEGHNT(X, Y, SHAJ, ECCNTY, SEG, PHI, ASECTR) 

DETERHINE THE VELOCITY OF THE SPACECRAFT AT PERIAPSIS 
VELCTY = SQRT(HU*(2./PERIAP-l./SHAJ)) 



THE SEHI-HAJOR AXIS IS THE 'OLD' SEHI-HAJOR AXIS 

CALCULATE THE DRAG ON THE VEHICLE DURING THE AEROBRAKING PROCESS i UNITS ARE (KG*KH/SEC"2) AND (LE) 
I 

DRAG = .S*CD*(RHO*l.E9)+VELCTY**2+AREA 
DRAGE = .S*CD+RHOE+VLCTYE++2*AREAE 

DETERHINE THE TIHE (IN MINUTES) OF THE AEROBRAKE PASSAGE 
TIHE = 2.*ASECTR*SORT(SXAJ/XU)/SHIN 
TIHE = TIHE/60. 

Z DETERHINE THE NEW SEHI-HAJOR AXIS 
ENRGYl 3 -HU/(2.*SHAJ) 
SHAJ -HU/(-2..DRAG*SEG/HASS+2..ENRGYl) 

DETERHINE THE PARAHETERS OF THE NEW ELLIPTIC ORBIT 
I 

CALL PARAHS( PERIAP, APOAP, SHAJ, PERIOD) 

PERIOD OF THE ORBIT IS IN HOURS 
PERDHR = PERIOD/3600. 

C CONVERT SI UNITS TO ENGLISH UNITS 

i 
i 

SHAJE = SHAJ.3280.839895 
APOAPE = APOAP.3280.839895 

CHECK IF THE APOAPSIS IS LESS THAN THE RADIUS OF THE 
HARTIAN ATHOSPHERE 

I 
IF(AP0AP . LE. 3643.5) GO TO 80 

I 

d 

C 

45 WRITE (7,120 1 I, PERAPE, APOAPE, SHAJE, PERDHR, DRAGE, TIHE 
IF(AP0AP . LE. APOAPF) GO TO 60 
TIHTTL = TIHTTL*PERIOD 

50 CONTINUE 
IF( APOAP . GT. APOAPF) GO TO 85 

DETERMINE THE TIHE TO TRAVEL THE HALF ORBIT FROH THE AEROBRAKING 
PERIAPSIS TO THE APOAPSIS. 

60 TIHEPA = .!%PERIOD 
A DELTA-V BURN WILL BE PERFORHED AT THE APOAPSIS TO RAISE THE 
PERIAPSIS TO 500 ka. 
THE TIHE TO TRAVEL FROH THE APOAPSIS TO THE PERIARSIS. 

DETERHINE THE PERIOD OF THE NEW ORBIT, AND 

SUAJAP = . S* ( (500. +3393.S) +APOAP 1 
PERDAP = 2.*PI*SORT(SHAJAP*.3/HU) 
TIHEAP = .S+PERDAP 
IF(AP0AP . EO. APOAPF) THEN 
PERDF = PERDAP 

ELSE 
GO TO 70 

END IF 
GO TO 75 

BECAUSE THE FINAL APOAPSIS FROH AEROBRAKING IS LESS THAN THE DESIRED 
APOAPSIS, A DELTA-V BURN WILL HAVE TO BE APPLIED AT THE PERIAPSIS 
TO RAISE THE APOAPSIS SO THAT THE FINAL CIRCULAR ORBIT IS OBTAINED 
THE PERIOD OF THIS ORBIT, AND THE TIHE TO COHPLETE ONE ORBIT (THUS 
FINALIZING THE CIRCULARIZATION OF THE ORBIT ABOUT HARS) IS DETERHINED 
70 SHAJF = 500.+3393.5 

PERDF = 2.,PI*SQRT(SHAJF++3/HU) 
75 TIHTL = TIHTTL+TIHEPA+TIHEAP+PERDF 

TIHHR = (TIHTL+TIHE1*TIHE2)/3600. 



I 
1 
I 
I WRITE(7, * ) '  ' 

WRITE(7, 1 'TIME BREAKDOWN (hrs 1 : ' 
WRfTE(7,t)' TIME TO INITIALIZE ORBIT: ', TIHE1/3600. 
WRITE(7,*)' TIHE "0 TRAVEL FROH APOAP TO PERIAP: ',TIHE2/3600. 
WRITE(7,*)' TIHE FOR AEROBRAKING PASSAGE: ', TIHTTL/3600. 
WRITE(7, 1 ' TIME TO TRAVEL FROH PERIAP TO APOAP: ', TIHEPA/3600. 
WRITE(7,e)' TIME TO TRAVEL FROM APOAP TO PERIAP: ',TIHEAP/3600. 
WRITE(7,*)' TIHE FOR 1 ORBIT AFTER CIRCULARIZE: ',PERDF/3600. 

WRITE(7,*)' TOTAL TIHE FOR AEROBRAKING PROCESS: ',TIHHR 

I PRINT@,I 
PRINT*,'AEROBRAKING TIHE= ',(TIHTL+TIHEl*TIHE2)/3600. 
PRINT., 'PER TO APOn ', TIHEPAl3600. 
PRINT., 'APO TO PER= ',TIHEAP/3600. 
PRINT., 'ORBIT AFTER CIRCULARIZATION= ',PERDF/3600. 
GO TO 90 

I 
80 WRITE(7, * )  'AEROBRAKING IS NOT POSSIBLE FOR THIS PERIAPSIS' 

GO TO 90 

I 85 WRITE(7, 1 'FINAL APOAPSIS HAS NOT BEEL REACHED' 

130 FORHAT(3X, 'PERIAPSIS (ft) ', 6X, 'APOAPSIS (ft 1 ', 6x, 
I 140 FORHAT(2X, FLS. 5, SX, F15.5, SX, F1S. 3, SX, F11.S) 1 'SEMI-MAJOR AXIS', SX, 'PERIOD (hrs) ' 1 

100 FORHAT(4X, 'PASS', SX, 'PERIAPSIS', 7X, 'APOAPSIS', 7X, 
1 'SEMI-MAJOR', 4X, 'PERIOD', 7X, 'DRAG', 8X, 'PASSAGE' ) 

110 FORHAT(3X, 'NUMBER',7X, '(ft)',llx, '(ft)',llx, 'AXIS (ft)', 
1 Sx, '(hrs)',7x, '(lb)',7x, 'TIHE (mln)')  

I 
I 120 FORHAT(4X, 13, SX, F13.3,3X, F13.3,3X, F13.3,3X, F7.3,3X, F10.3,4X, F8.3) 
I 
I 

I 
I 
I 

i 

I C 

IE 

90 CLOSE (UNIT = 7 )  
STOP 
END 

SUBROUTINE PARAHS (RP, RA, A, PERD 1 
THIS SUBROUTINE CALCULATES THE APOAPSIS AND PERIOD OF THE 
ELLIPTIC ORBIT, USING THE VALUES OF THE PERIAPSIS AND SEHI- 
HAJOR AXIS FROH THE HAIN PROGRAH 

THE PERIAPSIS, APOAPSIS, AND SEMI-HAJOR AXIS ARE IN km 
THE PERIOD IS IN sec, THE GRAVITATIONAL PARAHETER IS (knA3/secA2) 

REAL HU 
RA = 2.+A-RP 
PI = 3.141592654 
HU = 42656.0 
PERD = 2.*PI*SQRT(A.*3/HU) 

RETURN 
END 

SUBROUTINE NTRSEC ( A, B, E, X, Y 1 
THIS SUBROUTINE CALCULATES THE POINTS OF INTERSECTION OF THE 
SPACE VEHICLE'S ELLIPTIC ORBIT AND THE ATHOSPHERE'S CIRCULAR 
ORBIT, USING THE SEHI-HAJOR AXIS AND THE ECCENTRICITY FROH THE 
HAIN PROGRAM, AND THE SEHI-HINOR AXIS FROH SUBROUTINE PARAHS 



C 

RADIUS = 250.*3393.5 
X1 = 2.tA.E 
X2A = IO*A**2*E**2 
X2B I.*(B**2-RADIUS*+2+A**2*E*+2)*(l.-B+*2/A*t2) 
X2 SQRT(XZA-X2B) 
X3 2*(l. -B**2/A**2) 

x = (Xl-X2)/X3 
Y = SORT(RADIUS**2-(X-A*E)**2) 

THE INTERSECTION POINTS OF THE ELLIPTIC ORBIT ARE X AND Y 

RETURN 
END 

SUBROUTINE SEGMNTt X, Y, A, E, SEG, PHI, AREA) 
THIS SUBROUTINE CALCULATES THE LENGTH OF THE SEGHENT (ka) OF THE 
SPACE VEHICLE’S ELLIPTIC ORBIT BOUNDED BY THE MARTIAN ATMOSPHERE 
USING THE INTERSECTION POINTS, SEMI-MAJOR AXIS, AND ECCENTRICITY 
FROM THE HAIN PROGRAH 

c = 2.+Y 
D X-A*E 
R = SORT(D++2+Ytt2) 

PHI IS THE ANGLE OF THE BOUNDED SEGHENT, AND AREA IS THE AREA 
OF THE BOUNDED PORTION OF THE ORBIT 

PHI = 2. *ATAN(C/(2. *D) 1 
SEG = R*PHI 
AREA = .S+R*SEG 

RETURN 
END 
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AEROBRAKE ANALYSIS 

HALF-ANGLE FOR CONICAL AEROBRAKE (deg): 70.00000000 
DIAMETER OF THE AEROBRAKE (ft)* 95.00000000 
SURFACE AREA OF THE AEROBRAKE (ftn2): 7543.12402000 
MASS OF SPACE VEHICLE (1b)r 200000.00000000 

ATMOSPHERIC CONDITIONS: 
PERIAPSIS FROM CENTER OF HARS (ft): 1.14484910E*07 
DENSITY (8lug/ftn3): 2.429379489-10 

INITIAL ORBITAL PARAMETERS: 

PERIAPSIS (ft) APOAPSIS (ft) SEMI-HAJOR AXIS PERIOD (hre) 

11448491.00000 120592192.00000 

APPROX TIWE ( h r )  PRIOR TO AEROBRAKING: 

AEROBRAKE PROCEDURE: 

PASS 
NUWBER 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

PERIAPSIS 
(ft) 

11448491.000 
11448491.000 
11448491.000 
11448491.000 
11448491.000 
11448491.000 
11448491.000 
11448491.000 
11448491.000 
11448491.000 
11448491.000 
11 448491.000 
11448491.000 
11448491.000 
11448491.000 
11448491.000 
11448491.000 
11448491.000 
11448491.000 
11 448491.000 
11448491.000 
11448491.000 
11448491.000 
11448491.000 
11448491.000 
11448491.000 
11448491.000 
11448491.000 
I i 44~491. ooo 

APOAPSIS 
(ft) 

113458000.000 
107067800.000 
101310824.000 
96097224.000 
91353344.000 
87018344.000 
83041360.000 
79379664.000 
75997080.000 
72862736.000 
69950144.000 
67236472.000 
64701880.000 
62329112.000 
60103032.000 
58010348.000 
56039316.000 
54179508.000 
52421676.000 
50757564.000 
49179764.000 
47681636.000 
46257200.000 
44901056.000 
43608300.000 
42374508.000 
41195628.000 
40067988.000 
38988220.000 

66020340.00000 24.12273 

48.79166030 

SEHI-MAJOR PERIOD 
AXIS (ft) 

62453248.000 
99258144.000 
56379656.000 
53772856.000 
91400916.000 
49233416.000 
47244924.000 
45414076.000 
43722784.000 
42155612.000 

39342480.000 
38075184.000 
36888804.000 
35775760.000 
34729420.000 
33743904.000 

31935084.000 
31103028.000 
30314128.000 
29565064.000 
28852846.000 
28174772.000 
27528396.000 
26911498.000 
26322060.000 
25758238.000 
25218354.000 

40699320.000 

32813998.000 

(hrs) 

22.194 
20.513 
19.037 
17.732 
16.572 
15.535 
14.603 
13.762 
13.001 
12.308 
11.676 
11.097 
10.565 
10.075 
9.623 
9.204 
0.815 
8.453 
8.115 
7.800 
7.50s 
7.229 
6.969 
6.725 
6.495 
6.278 
6.073 
5.879 
5.695 

DRAG 
(lb) 

388.908 
386.799 
384.695 
382.594 
380.499 
378.407 
376.319 
374.235 
372.155 
370.079 
368.006 
365.937 
363.872 
361.810 
359.751 
357.695 
355.642 
353.592 
351.545 
349.501 
347.459 
345.419 
343.382 
341.347 
339.314 
337.282 
335.252 
333.224 
331.197 

PASSAGE 
TIME (sin) 

11.691 
11.762 
11.835 
11.909 
11.983 
12.060 
12.137 
12.216 
12.296 
12.378 
12.461 
12.546 
12.633 
12.721 
12.811 
12.902 
12.996 
13.091 
13.188 
13.288 
13.389 
13.493 
13.599 
13.708 
13.819 
13.933 
14.050 
14.169 
14.292 



11448491. OOO 36960228. OOO 

33 11448491.000 35089896. OOO 
11448491. OOO 34207976. OOO 
11448491.000 33338782. OOO 

36 11448491. OOQ 32540420. OOO 
11448491. OOO 31751138. OOO 
11448491. OOO 30989304.000 

39 11448491. OOO 30253406. OOO 
40 11448491. OOO 29542030. OOO 

11448491.000 28853862.000 
11448491.000 28187662. OOO 42 

43 11448491.000 27542282. OOO 
11448491.000 26916638.000 
11448491.000 26309712.000 45 

46 11448491. OOO 25720344.000 
11448491.000 25148234.000 
11448491.000 24591922.000 

49 11448491.000 24050806.000 
50 11448491.000 23524116.000 

11448491.000 23011118. OOO 
52 11448491.000 22511124.000 
53 11448491.000 22023460.000 

11448491.000 21547492.000 
11448491.000 21082604.000 55 

56 11448491.000 20628198.000 
11448491.000 20183694.000 
11448491.000 19748528.000 

59 11448491.000 19322144.000 
60 11448491.000 18903988.000 

11448491.000 18493504.000 
11448491.000 18090140.000 

61 
62 
63 11448491.000 17693322.000 

11448491.000 17302464.000 
11448491.000 16916940.000 65 

66 11448491.000 16536080.000 
11448491.000 16159161.000 

68 11448491.000 15785364.000 
11448491.000 15413744.000 69 
11448491.000 i5043186.000 
11448491.000 14672308.000 

72 11448491.000 14299343.000 
73 11448491.000 13921898.000 

11448491.000 13536531.000 
11 448491.000 13137854.000 75 

76 11448491.000 12716375.000 

32 11448491. OOO 36006576. OOO 

I 41 

I 44 

I 54 

I 64 

I 67 

I 74 

AEROBRAKING COHPLETE I TIHE BREAKDOWN (hrs 1 : 
TIHE TO INITIALIZE ORBIT: 
TIHE TO TRAVEL FROH APOAP TO PERIAP: I TIHE FOR AEROBRAKING PASSAGE: 
TIHE TO TRAVEL FROH PERIAP TO APOAP: 
TINE TO TRAVEL FROH APOAP TO PERIAP: I TIHE FOR 1 ORBIT AFTER CIRCULARIZE: 

24204360. OOO 
23727534.000 
23269194.000 
22828234.000 
22403636.000 
21994456.000 
21599814.000 
21218898.000 
20850948.000 
20495260.000 
20151176.000 
19818076.000 
19495386.000 
19182564.000 
18879102.000 
18584518.000 
18298362.000 
18020206.000 
17749648.000 
17486302.000 
17229804.000 
16979808.000 
16735976.000 
16497992.000 
16265547.000 
16038344.000 
15816093.000 
15598510.000 
35385317.000 
15176239.000 
14970998.000 
14769316.000 
14570907.000 
14375477.000 
14182715.000 
13992285.000 
13803826.000 
13616927.000 
13431118.000 
13245838.000 
13060399.000 
12873917.000 
12685194.000 
12492513.000 
12293172.000 
12082433.000 

36.73029330 
12.06136420 
472.14114400 
0.94430298 
1.02305233 
2.05304074 

5.355 
5.197 
5.048 
4.905 
4.769 
4.639 
4.514 
4.395 
4.282 
4.172 
4.068 
3.967 
3.871 
3.778 
3.689 
3.603 
3.520 
3.440 
3.363 
3.288 
3.216 
3.146 
3.079 
3.013 
2.950 
2.888 
2.829 
2.770 
2.714 
2.659 
2.605 
2.552 
2.501 
2.451 
2.402 
2.354 
2.306 
2.260 
2.213 
2.168 
2.122 
2.077 
2.032 
1.986 
1.938 
1.889 

327.146 
325.122 
323.098 
321.075 
319.051 
317.027 
315. 003 
312.978 
310.953 
308.925 
306.897 
304.866 
302.833 
300.797 
298.758 
296.715 
294.669 
292.618 
290.561 
288.500 
286.431 
284.356 
282.273 
280.182 
278.081 
275.969 
273.846 
271.711 
269.561 
267.395 
265.213 
263.011 
260.788 
258.540 
256.266 
253.961 
251.622 
249.244 
246.820 
244.344 
241.805 
239.192 
236.489 
233.672 
230.708 
227.544 

14.546 
14.679 
14.815 
14.955 
19.099 
15.247 
15.400 
15.557 
15.720 
15.887 
16.061 
16.240 
16.426 
16.619 
16.818 
17.026 
17.242 
17.467 
17.701 
17.946 
18.202 
18.470 
18.752 
19.048 
19.360 
19.690 
20.039 
20.409 
20.804 
21.225 
21.677 
22.164 
22.690 
23.261 
23.886 
24.574 
25.337 
26.190 
27.155 
28.260 
29.547 
31.074 
32.934 
35.280 
38.391 
42.842 

TOTAL TIHE FOR AEROBRAKING PROCESS: I 524.95318600 
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APPENDIX B 

Optimization of Propellant Harm of 8 
Sol id-Prop118nt  Rocket  
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************************************************************'**** 
M I K E  L I S A N O  
AUEURN U N I V E R S I T Y  AEROSPACE ENGINEERING SENIOR D E S I G N  PROJECT 
UNPANNEO M A R S  M I S S I O N  
. 0 ~ ~ ~ 0 ~ 0 ~ ~ . ~ ~ ~ . ~ 0 . ~ . . 0 . . ~ . 0 . ~ . ~ ~ . 0 ~ ~ ~ . 0 . . ~ 0 0 . ~ . 0 . 0 0 0 . 0 0 . 0 ~ ~ ~ . 0 ~ .  

" ST A G  E S "  

PRCGRAIU: TO O P T I M I Z E  THE PROPELLANT MASS OF A SOLID-PROPELLANT 
ROCKET LAUNCHING I N  AN ARBITRARY GRAVITY F I E L D  FOR A G I V E N  
D E S I R E D  O R 8 1 1  ( P I T C H  PROGRAM INCLUDED)  **************************************************************** 
COPMON /ROCK/TCGMS/DF/D I A / B  R /  G A R M A / R G A S / G C  
C O C M O N / P L A N / G R A V / R / A / O M E C A , R A D / A L A f  
COPMON/LAUN/V ( 6 1  0) / G  (61 0) / H (61 C) /AM<610)  DELV (61 0) r A C C  (61  0) 

UN If C ONVE H S I O N  FACTOR G C  ( L a M - F T / L B  F-S EC**2 )  
C C r 3  2,174 

S P E C I F I C A T I O N S  OF ROCKET: 
(CCMEUSTION TEMPERATURE OF PROPELLANT0 DEGREES R A N K I N E )  

( D E N S I T Y  OF F U E L /  L B M / I N * * 3 )  

(PROPELLANT CROSS-SECTION b I A M E T E 2 /  FT)  

T C CM 8=6700 

DFs .065  

FD IAS2.916O7 
D I ~ ~ P F D I A * ~ L ~ O  
(PROPELLANT BURN RATE/  I N / S E C )  
BRa0.55 
( S F E C I F I C  HEAT R A T I O  OF 6URNING PROPELLANT ( D E F A U L T : A I R ) )  
GA)rPlA=l.b 

RGPS=53,3 

( P E R F E C T  G A S  CONSTANT O F  B L R N I N G  PROPELLANT ( D E F A U L T : A I R ) /  
F 1- L B  F/ LSIII-R) 

(DEADUEIGHT R A T I O  OF BOOSTER) 

(MASS CF PAYLOAD TO a E  C A R R I E D  I N T O  O R B I T /  LBM) 
DURATr.12 

A M  F= I O  00 , 0 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

DATA FOR LAUNCH: 
( a A D I U S  OF P L A N E T /  N M I )  
RACr1841  a 0 3  
( L A T Z T U D E  g F  LAUNCH S I T E /  DECREES) 
OL AT =o .o 
AL AT =D L A T /  33  2 9 5 7 7 3  
(ANGULAR V E L O C I T Y  OF P L A N E T /  RPD/SEC)  
0 M E t  A= a 3 0 0  C 7  
( D E S I R E D  ALTITUDEI  N M I )  
ALl= 27 c. 0 
H F =A LT*608u. 
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I 
(TCTAL HEIGHT, F T )  

C S E M I ~ M A J O R  A X I S  OF D E S I R E D  O R B I T 8  N M I  (DEFAULTS TO A I R ) )  
I R =  (RAD *608U. )+HF 

SML-RAD+ALT I A=l?lA*6080. 

FT/ SEC**2> I GSlRF=l2.332 

( G R A V I T A T I O N A L  ACCELERATION ON THE SURFACE OF THE PLANETI 

( G A A V I T A T I C N A L  PARAMETER OF PLANET I N  FT* *3 /SEC**2 )  
G R C V S I  . 5 0 6 > E l S  **************************************************************** 
WRIT  E ( 6 r l l  U) 
FORMAT ( / / / / 3 X /  ' O P T I M I Z  A T I O N  OUTPUT: ' 1 

I 
.oo. 0~0.00~.00..0.~00~.0.. -0  0.00.00.0..0000..~000.00.0.0..00.~.. 

SUEROUTINE "ROCKET" CALCULATES THE EXHAUST V E L O C I T Y  ( C )  AND T I K E  
RATE OF CHANGE OF M A S S  CDMDT) CF THE ROCKET: I 

S U e R O U t I N E  "SPEEDS" C A L C U L l T E S  THE SPEED OF THE ROCKET DUE 
TO PLANETARY S P I N  aEFORE T A K E O f F r  AND THE SPEED OF THE 
ROCKET I N  THE D E S I R E D  O R B I T :  

I CALL SPEEDSCVSURFIVORB) 
WRIT E ( b r 1 l L )  VSURFIALT/VORB 
FORMATC// IJX/ 'VELOCITY O F  PLANET SURFACE = ' / F l 2 = 3 / 1 X / ' F T / S E C ' /  

* / /  /3 X I  'DESIRED O R B I T  A L T I T U D E  0 ' 1  F 1 2  . 3 / 1  X /  ' N  M I ' / / / /  3X/  
* 'VELOCXTY CF ROCKET I N  D E S I R E D  O R B I T  I ' / F ~ Z . ~ / ~ X I ' F T / S E C ' )  

I -  

SUEROUTINE "LAUNCH" CALCULATES THE TOTAL CHANGE I N  SPEED AND 
CHANCE I N  A L T I T U D E  O F  A S I k G L E  STAGE ROCKET B E I N G  LAUNCHED I N  
T H E  CRAVXTY F I E L D  OF A G I V E N  PLANET. AERODYNAMIC FORCES O N  THE 
ROCKET H A V k  BEEN NEGLECTED-  THE I N I T I A L  M A S S  OF THE ROCKET IS 
INCREMENTEO FROM THE M A S S  i iEQUIRED F O R  A TEN M I N U T E  BURN TO T H A T  
R E W I R E D  T G  REACH THE D E S I R E D  A L T I T U D E  ( H F )  AND V E L O C I T Y  ( \ORB) .  

CALL L A U N C H ( D W R A T / V S U R F ~ G S U R F , A M F , D M D f / C , H F / R A D / V O R B )  

STCP 
END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUEROUTINE ROCKET(C/  DMDT) 
C O P M  CN /ROCK/TCOMB/DF/  D IA,B R I  GAPMA/ RGAS, G C  
A =  (3  .1 41 S 9 d 7 *  ( 0  I A * * 2 )  ) /4 . 
OMOT =A *D F *ER 
C ~ S Q R T ( ( 2 , * G A M M A * R G A S / ( C A M M A ~ 1  >*GC*TCOMB) 
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RETURN 
END 

ioo 

SUeROUTINE SPEEDS(VSURFIVORB) 
COPW ON/PLAN/ GRAVI RIANOMEGA .RADIAL AT 
V S t R  F* CM EG A*RAD* 6080 *COS ( AL AT 
VORB=S QRT ( G i i A V *  C C Z  rn / R )  - C  1 / A  3 
RETURN 
ENC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUeROUTINE LAUNCH(DWRAT/VSURFIGSURFIAMFIDMDTICIHFIRAD~VORB)  
COPM ON /LAUN/V (61 0 IC (61  0) I H ( 61 C P A M  (61 0) r DELV ( 61 0) I A C  C (61 0) 

TAPGET BURN T I M E  ( S E C ) .  DETERMINES I N I T I A L  M A S S  A M ( 1 )  
TBURN=350.c 
T I P E  INCREMENTS ( S E C )  
D T = l  .O 

P I T C H  PROGRAM (ARBITRARY/  F I V E  STEP0 I N I T I A L  T H E T A  = O DEG.8 
F I N A L  THETA = 90 DEG,) 
I F (H (I >. CE.H F )  GOTO 1900 

IF (H (I 1 . 61 .  ( H F * . 1 5 )  1 G O T O  1 f O C l  

IF(H(I).CT.(HF*.01))GOTO 1590 

I F ( H  ( I ) . C T ~ ( H F * ~ 4 ) ) G O T O  18CO 

IF(H(I)~GT~(HF*~O5))GOTO I C 0 0  

D T HE T= 4 5 . 0  
G O T 0  100 

GOTO 1 C O  
D 1 HE T= E O  . 0 
G O T O  100 
D 1 HE T= E 5  . 0 
GO70 1 C O  

D T bE T= 65 0 

1360  T=T-DT 
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I W R  I T  E( 6/21  L )TBURN/AMCl  )rT/VEL,HT,AC/AMM/ PR/TPR/EXC 

* / / # 3 X / ' T H E  TARGET T I M E  OF SURN I S  ' , F 8 . 3 r l X / ' S E C ' /  
1 2  F O P M A T ( / / r 5 X / ' D A T A  F O R  SINGLE-STAGE ROCKET LAUNCH:'/ 

* / / / 3 X / ' T H E  I N I T I A L  M A S S  OF THE ROCKET I S  ' / F l 2 . 3 / l X / ' L B M ' /  
* / / / 3 X / ' T H E  TOTAL T I M E  OF B U R N  IS ' r F 8 . 3 / 1 X / ' S E C ' r  
* / / r 3  XI 'THE F I N A L  VELOCITY I S  ' i f 1  2 . 3 / l X / '  F T /  SEC'/  
* / / / 3 X / ' T H E  F I N A L  A L T I T U D E  IS ' r f l 2 . 4 / 1 X / ' N  MI'/ 

* / / r 3 X / ' T H E  F I N A L  MASS OF ThE ROCKET IS ' / F 1 2 . 3 / 1 X / ' L B M ' r  
* / / r 3 X / ' T H E  D E S I G N  PAYLOAD RATIO OF THE ROCKET IS ' / F 9 . 6 /  

* / / / 3 X / ' T H E  EXCESS MASS AFTER F I R I N G  I S  ' / F 1 2 . 3 / 1 X / ' L B M ' )  

* / / / 3 X / ' T H E  F I N A L  ACCELERATION IS ' / F 6 . 2 / l X / ' G S ' /  

* / / / 3 X / ' A C T U A L  F I N A L  M A S S I I h I T I A L  MASS I S  ' /F9 .6 /  

RETURN 
ENC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5s 



O P T I M  12 AT I O N  OUTPUT: 

I 
EXHAUST V E L O C I T Y  OF ROCKET * 8 3 6 8 . 1 4 4  F T I S E C  

I PROPELLANT CONSUMPTION RATE = 34m395610 L B M I S E C  

I V E L O C I T Y  CF PLANET SURFACE = 

I V E L O C I T Y  CF ROCKET I N  D E S I R E D  O R 8 1 1  = 

I DATA FOR SINGLE-STAGE ROCKET LAUNCH: 

783.551 FT /SEC 

DESIRED O R B I T  A L T I T U D E  = 2 7 0 s O G O  N H I  

1 0 8 3 3 , 8 6 7  F T / S E C  

THE T P R G E T  T I ~ E  O F  BURN IS 2 5 0 . 0 ~ 0  S E C  

THE I N I T I A L  M A S S  O F  THE ROCKET TS 1 0 7 7 1  480 LBM 
I 
1 THE TCTAL T I M E  OF BURN IS 2SC.OOG SEC 

THE F I N A L  V E L O C I T Y  IS 14047m491 F T I S E C  

I THE F I N A L  A L T I T U D E  I S  2 1 0 . 3 7 0 2  N M I  

THE F I N A L  ACCELERATION I S  4 m 3 5  C S  

THE F I N A L  M A S S  OF THE ROCKET I S  2 1 7 2 . 5 7 8  LBM 
I 
I THE D E S I G N  PAYLOAD R A T I O  O F  T H E  ROCKET IS Om092838 

ACTUAL F I N A L  P A S S / I N I T I A L  M A S S  I S  0 ~ 2 0 7 6 9 7  

I THE EXCESS M A S S  AFTER F I R I N G  I S  1 1 7 2 . 5 7 8  LBfl 
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O P T I M I Z A T I O Y  CUTPUT: 

EXHAUST V E L O C I T Y  OF ROCKET = 8 9 6 8 , 1 6 4  F T I S E C  

PROPELLANT CONSUMPTION RATE 3 4 , 3 9 5 6 1 0  L B M I S E C  

V E L O C I T Y  OF PLANET SURFACE = 783,551 FT/SEC 

DESIRED O R B I T  A L T I T U D E  = 2 7 0 . 0 0 0  N M I  

V E L O C I T Y  CF ROCKET I N  D E S I R E D  O R B I T  f 1 0 8 3 3 . 8 6 7  F T / S E C  

DATA F O R  S INCLE-STAGE ROCKET LAUNCH: 

THE T A R G E T  TIRrE OF BURN TS 3 S O o O 3 O  SEC 

THE I h f T f A L  M A S S  OF THE ROCKET I S  1 4 6 8 0 . 0 7 2  LBM 

THE TCTAL T f M k  OF BURN IS 336o1)OG SEC 

THE F I N A L  V E L U C I T Y  I S  13328.603 F T I S E C  

THE F I N A L  A L T I T U D E  I S  268 .750C N MI 

T H E  F I N A L  ACCELERATION IS 3.C3 GS 

THE F I N A L  MASS OF THE ROCKET IS 3 1 2 3 , 1 4 7  LaM 

THE D E S I G N  PAYLOAD R A T I O  OF THE ROCKET I S  0 . 0 6 8 1 2 0  

ACTUAL F I N A L  M A S S / I N I T I A l  M A S S  IS 0 .212747  

THE EXCESS M A S S  AFTER F I R I N G  IS 2 1 2 3 . 1 4 7  LBM 
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O P T 1  M IZ AT I O N  OUTPUT : 

i 
EXHAUST V E L O C I T Y  O F  ROCKET 8 9 6 8 . 1 4 4  F T I S E C  

1 PROPELLANT CONSUMPTION RATE 3 4 8 3 9 5 6 1 0  LBIY/SEC 

I DATA F O R  SINCLE'STACE ROCKET LAUNCH: 

THE T P R G E T  T I P E  O F  BURN I S  45OsOCO SEC 

THE 1F; I t IAL  M A S S  OF THE ROCKET IS 1 8 5 8 a . 6 6 4  LaM 

I THE T C T A L  T I M E  OF BURN I S  3 9 4 8 0 0 c  SEC 

THE F I N A L  V E L U C I T Y  I S  1 0 9 5 5 . 6 8 4  F T I S E C  

THE F I N A L  A L T f T U D E  I S  2 6 8 . 4 3 5 6  N M I  

THE F I N A L  A C C t i L E R A f I O N  I S  1.37 G S  

THE F I N A L  MASS OF THE ROCKET I S  5 0 3 6 . 7 9 4  LBM 
i 
1 THE D E S I G N  PAYLOAD R A T I O  O F  THE ROCKET I S  0 . 0 5 3 7 9 6  

ACTUAL F I N A L  PASSIINITXAL M A S S  IS 0 . 2 7 0 9 6 1  

4 3 3 6 . 7 9 4  L B f l  
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F I N A L  V E L O C I T Y  VS. "DESIGN BURN T I M E "  
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FIGURE B.3 

PAYLOAD R A T I O  VS. "DESIGN BURN TIME" 

0.000 1.000 2.000 3.000 4.000 5.000 6.003 ?.COO &E33 
I N I T I A L  PROPELLANT/BURN RATE, SEC 
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FIGURE B.4 

EXCESS MASS VS. "DESIGN BURN T I M E "  
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APPENDIX C 

Calculation of  Stagnation Ten~r8ture on Mar8 Lander 
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ORIGINAL PAGE E 
OF POOR QUALITY 

rhere Tr lr the tenprature at the rtrgnrtion point of the body 
(degreer Rankine) 

imam ir the rrdirtlve hemt flux from air to body 
( Btu/f t’ /rea 1 

€ ir the enirrivity of  the fluid 

8.0 ir the Stefan-Bo1trn.n conrtant 
4.481 E-12 Btu/ft* /rec/OR) 

For the 8tn08phere of Hrr8 the enirrivity ir rrrunnd to be 

epproxlnrtely the r a m  value 81 the enirrivity of the Earth’o at- 

noaphere, or 

E = 0.8 

For the flor-body ryrten to be in equilibrium, the heat 

radiated to the body nurt equal the heat convected fron the body 

to the flort 

4.a. ;laemu 

An enpiricrl fornula fron Nlcolai 8IlOV6 the calculation of 

the convective heat flux: 

= freeatrean denrity (rlugr/ftJ) 
f a 2  

where 

u = freertrern velocity (ft/rec) 

R = rrdiur of curvrture of t h e  nore (ft) 

A = rreep rngle of wing leeding edge (zero degreeel 
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ORIGINAL PAGE IS 

OF 

At an altitude of $00 nautical iller the denrlty of the 

Martian atlorphere lr deterrind: 

Pi00 n . d  I 

st- uri * = T \ ~ d .  

= 35.10 ft=lbf/(lbn=oR) 
ma 

rhere R 

Tlo. ..d - 324.6 OR 

Pimkd * 0.0042837 lbf/ft' 

The valuer of T and P wore obtained iron Viking data. 

The velocity at 100 nautical milem war emtirated by arruring 

that the rpmcific total nechanicrl energy of the lander at 100 

nautical riler ir the raw a m  the.rpecific total nechanical 

energy at 270 nautical mller. Thir arrurptlon impllcrr that no 

work ir done by drag forcer, which would decrerre the total 

energy of the lander. Thur the velocity emtirate lr highr 

mnd r rtrgnrtion temperature of 

T. = 1630 OR 
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APPENDIX D 

Optimizmtion of Recovery Syrtem nrrr 
For Harm Lmnderr 
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........................... 
Weight  S t a t e m e n t  

P a r a c h u t e  Sys t em Weight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1610 

P i l o t  Chu te . . . . . . . . . . . . .  8 
Drogue  Chute . . . . . . . . . . . .  224 

Main P a r a c h u t e  

Main Pa rdchu te . . . . . . . . . .  391 X 3 

Misc. S t r a p s .  ........... 69 

S u p p o r t  S t r u c t u r e . . . . . . .  76 

F i t t i n g s  a n d  F l o t a t i o n . .  59 

SRM Weight  ........................................... + 2639 

P r o p e l l a n t . . . . . . . . . . . .  2 2 4 3  
C a s e  Weight . . . . .  ...... 596 

------------ 
Recovery  Sys t em T o t a l  Weight  ......................... 4249 

Basic V e h i c l e  Weigh t  .................................'+ 58500 

Total  V e h i c l e  Weigh t  ( R e e n t r y )  ....................... 62749 
------------ 

P a r a c h u t e  S y s t e m  SRM 

1 pilot d 11.7 f t .  d i a m e t e r  ISP .................. 260 sec 
1 d r o g u e  (5 5 4 . 4  f t .  diameter 
3 m a i n s  (3 129.7 f t .  d i a m e t e r  t h r u s t  ............... l(:)C)(X)Cl 1 bf 

6.04 set 
i m p a c t  v e l o c i t y  ...... 9.92 f p s  

f a l l i n g  h e i g h t  ........ 

m a s s  f rac t ion  ........ (:I . 8 5 (3 

7 5  f p s  t e r m i n a l  v e l o c i t y  b u r n  t i m e  ............ 
c o n s t a n t  v e l o c i t y  

t o t a l  d i s t a n c e  f a l l e n .  
maximum d e c e l e r a t i o n . .  1.6 (3's 

5.1 f t  .-! Al0.2 f t  
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